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Hemes play a central role in the activation and transport of 0.12-
dioxygen (Q) in living organisms-~2 In this regard, study of the AA
photodissociation of @from oxy-hemes has been an important
experimental tool for probing active site structure and reactivity. 0.08 4

Pioneering investigations by Gibson showed that light excitation

of oxy-myoglobin or hemoglobin resulted in the release gfn@h

low gquantum yields. Traylor and co-workers later concluded that 0.04 -
upon heme-O; photolysis the initial quantum vyield is unity and

that geminate recombination ot @ith the ferrous heme accounted

for the low yield measured on long time scafddowever, recent 0.00 4=
ultrafast studies on oxy-myoglobin cast serious doubt on this
conclusiori® and reveal a low intrinsic quantum yield of 0.3 at the

earliest observation timés.The elucidation of factors that control -0.04 —_— —

O, photodissociation and rebinding remains of great interest. 350 400 450 500 550 600 650NM
Different Oy-binding mode¥:1! and/or a distribution of protein Figure 1. Time-resolved absorption spectra recorded after pulsed 532-nm
confirmationd?13 have been discussed in these regards. light excitation of ()Fe'"(O,™) in THF at 198 K. The data are shown at

- - - ) . . delay times of 10 nsH), 100 us (@), 200 us (a), and 300us (®). A
In principle, spectroscopic studies of well-characterized synthetic spectrum simulated as (AbsgFe! (thf)s] — Abs[(Fs)Fe" (O,-)]) is overlaid

oxy-hemes in fluid solution could provide valuable insight into the iy red. The inset shows the observed rate constant as a function of the
factors that govern ©binding and dissociation. In the past, dioxygen concentration leading t@, = 5.7 x 106 M~1 s,
photogeneration of &from synthetic “picket-fence” oxy-hemes has
focused upon axial ligand effects on the bimolecularb@ding
steg*1% and geminate recombination of, & We find that pho-
tolysis of synthetic hemeO, adducts (formally Pé—superoxo
(O27) complexes) in tetrahydrofuran (THF) at 198 K produces free
O, with quantum yields comparable to that known for oxy-
myoglobin. Furthermore, utilizing a simple, sterically unhindered
tetraphenyl porphyrin leads us to a complex possessing the highest
quantum yield measured (for complete dissociation) = 0.60.

The compound (gF€' (Chart 1), as a bis-THF adduct,gjFe'-
(thf),, (Fs = tetrakis(2,6-difluorophenyl)-porphyrinate-2), has
previously been synthesized and structurally charactetizé#it
reacts with dioxygen below-40 °C in tetrahydrofuran (THF) to
form an adduct, well described as a herseperoxo compound,
(Fg)FE"(027), »(O—0) = 1178 cm? (A(*80,) = —64 cmY),
having electronic absorptions at 416 nm (Soret band) and 536 nm
(Q-band)!®20 Closely related hemeO, adducts can be generated
in alternative environments. Thus, low-temperature oxygenation was
also used to generaté_jFe" (O,7) wherebL is 5-(ortho-O-[N,N,-
bis(2-pyridymethyl)-2-(6-methoxyl)pyridinemethanamine]-phenyl)-

Chart 1

10,15,20-tris(2-(2,6-di-fluorophenyl))porphifi@s well as bimetallic [(SL)Fe”cU']B(csésr)d [(eL)Fe”Fe”(CI)[ézCer)‘;]

compounds with a superstructured neighboring irof{t) copper-

(D22 ion coordinated to the tether arm SLJFe' (Chart 1)24 compound, (BFe!(thf),, and Q has been released (Scheme 1). If
Pulsed 355- or 532-nm light (fwhm-8L0 ns; 5 mJ/pulse) superoxide (@) had been photoreleased, the absorption difference

excitation of (B)F€"(O,") under 1 atm of @in THF at 198 K spectra of the resulting ferric heme would be present, contrary to

resulted in the immediate appearance of the absorption differencewhat was observe#.

spectrum shown in Figure 2. This reveals a bleach of the The coordination of @to the reduced heme takes place on a

absorption bands associated with the hesgperoxo compound  time scale amenable to nanosecond flash photolysis measurements.

and the appearance of new absorption bands &jth= 427 and Observed rate constants fop @binding (Scheme 1kqns under

560 nm (Figure 1). This transient spectrum corresponds well with pseudo first-order conditions (excesg) Qvere independent of the

that calculated for (Abs[@F€'(thf),] — Abs[(R)Fe"(O27)]), monitoring wavelength, the [gfF€"(O,7)] concentration (0.2

indicating that the new intermediate formed is the ferrous solvento 6.0 uM), and the laser excitation energy-{%0 mJ cn1?) under
16712 = J. AM. CHEM. SOC. 2004, 126, 16712—16713 10.1021/ja045195f CCC: $27.50 © 2004 American Chemical Society
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THF at 198 K&
complex kop (M~1s7Y) ¢ References
(Fe)FE" (O2) 5.7x 1P 0.604 0.02 (1) James, B. RThe Porphyrins Academic Press: New York, 1978; Vol.
(SL)F" (027) 6.4x 10P 0.22+ 0.03 V.
[(BLFE (O )Cu]* 6.8 x 10° 0.344+ 0.04 (2) Momenteau, M.; Reed, C. AChem. Re. 1994 94, 659-698.
6 o.,~\Ed! + (3) Collman, J. P.; Boulatov, R.; Sunderland, C. J.; FuChem. Re. 2004
[(BL)FE" (O )FE!(CIY] 9.0x 10P 0.184+0.02 104, 561588,
a . . . . (4) Antonini, E.; Brunori, M.Hemoglobin and Myoglobin in Their Reactions
The viscosity of THF at 198 K is 2.1 centipoige. with Ligands North-Holland Publishing: Amsterdam, 1971.
. . . . (5) Gibson, Q. H.; Ainsworth, SNature 1957, 180, 156-157.
all conditions studied (Figure S%J.At low [O,] concentrations (6) Jongeward, K. A.; Magde, D.; Taube, D. J.; Marsters, J. C.; Traylor, T.
(1-5 mM), the process was also shown to be first-order, and a G.; Sharma, V. SJ. Am. Chem. S0d.98§ 11q 380-387.
. . . . (7) Ye, X.; Demidov, A.; Champion, P. Ml. Am. Chem. So2002 124,
plot of kyps @s a function of the dioxygen concentration (Figure 1 5914-5924.
inset) is linear and yields a second-order rate constant fer O (8) gvgalzdaésli.zlle.c;)gLiu, X.Y.; Sharma, V. S.; Magde, Biochemistry1994
indi I - “1g1 , 21 .
re?;ndmg to (E)Fé (thf)z 0f ko, = 5.7+ 0.5 1PMtstat198 (9) Related femtosecond analysis of MbNO photolytic processes affords a
K. greater yield (0.81.0) than previously measured on a picosecond time
i 1l —\ 21 [(6 I_ scale (0.5); ref 7. Zemojtel, T.; Rini, M.; Heyne, K.; Dandekar, T.;
-I;he Olther hezrzne dloxygenllcomiplexé‘!k,)z[;e' (OZ )’ [( L)F.el Nibbering, E. T. J.; Kozlowski, P. Ml. Am. Chem. So2004 126, 1930~
(O)FE'(CN]F,22and [EL)Fe" (O,7)Cu]™ 23, were also studied to 1931.

examine whether the presence of a LeW|s base or a second metal (10) Vl/étanabe T.; Ama, T.; Nakamoto, &. Phys. Chem1984 88, 440~

center affects the £photodissociation quantum yield or rebinding (11) De Angelis, F.; Car, R.; Spiro, T. G. Am. Chem. So2003 125 15710~
kinetics2® The photogenerated transient spectra were within 15711.

(12) Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus,
experimental error, the same as that observed after excitation of I C. Blochemistry1074 14, 5355 5373,

(Fe)Fe"(O,7) (Figure S2)f” Small, but measurable, changes inthe  (13) Agmon, N.; Hopfield, J. 1. Chem. Phys1983 79, 2042-2053.
observed rate constant for dioxygen coordination were observed (14) Collman J. P.; Brauman, J. |.; Doxsee, K. M.; Sessler, J. L.; Morris, R.

(Table 1) Glbson Q. H.Inorg. Chem 1983 22, 142%1432
) . . . . (15) Collman J. P.; Brauman, J. |.; lverson, B. L.; Sessler, J.; Morris, R. M.;
The most striking data were the differences in the quantum yield Gibson, Q. HJ. Am. Chem. S0d.983 105, 3052-3064.

(¢) for photorelease of determined by comparative actinometry ~ (16) gamlgg%;lgm%ag N.; Traylor, T. G.; Magde, DPhys Chem1994
(Table 1)?"In all cases, the quantum yields were measured on @ (17 opias, H. V.; van Strijdonck, G. P. F.; Lee, D.-H.: Ralle, M.; Blackburn,

10 ns,us, and ms (16° — 1073 s) time scale. To our knowledge, N. J.; Karlin, K. D.J. Am. Chem. Sod998 120, 9696-9697.

— ; : Il -y i (18) Ghiladi, R. A,; Kretzer, R. M.; Guzei, |.; Rheingold, A. L.; Neuhold, Y.-
the¢ 0.60+ 0.02 after light absorption by ¢fre (02 ) IS_ the M.; Hatwell, K. R.; Zuberbtler, A. D.; Karlin, K. D.Inorg. Chem2001,
highest ever measured by these methods. Such a high yield can be 40, 5754-5767.

i i i i (29) Thompson D. W.,; Kretzer, R. M.; Lebeau, E. L.; Scaltrito, D. V.; Ghiladi,
attributed to the sterically unhindered nature of the porphyrin R.A-Lam K-C.. Rheingold. A. L. Karlin. K. D.. Meyer. G. Jiorg.

allowing solvent to easily coordinate to the heme and thus efficiently Chem.2003 42, 5211-5218.

displace Q. The¢ = 0.22+ 0.03 for (L)F€"'(O,") is remarkably (20) Kim, E.; Helton, M. E.; Wasser, |. M.; Karlin, K. D.; Lu, S.; Huang, H
similar to that measured for oxy-myoglobin, which also has a ligated \,\’AV Q/;,ee”rﬁ%"_?%sze'rgﬁ|e':Cﬁ_r"[')t%r%'c_'j,'\iaﬁ_hi'ggg_'ds'cﬁ' L',‘_"S_'jgé‘gé’ker'
strong (i.e., pyridine or imidazole) base axial ba3&e G quantum 100, 3623-3628.

yield of the heme/non-heme compound was not dramatically (21) Ghiladi, R. A Karlin, K. D.Inorg. Chem2002 41, 2400-2407.

(22) Wasser, I. M.; Huang, H.-w.; Moenne-Loccoz, P.; Karlin, K. D. Submitted

different (Table 1), perhaps indicating that @as released from for publication, 2004.
the porphyrin face opposite that of the non-hemteiety (Chart (23) '\Clihilﬁdli(,j RY AM: _Jg,bT. kIth-];I Leg, B-_—I;IN: Mammi-qucgz&P.;FL(%d?rKli, IS
1)3 The CU containing analogue §()Fe'Cu]* is of direct K D JoAm. Chem. 804999 121 98gaegags.  — oo A,

relevance to cytochromeoxidase model chemistry where the role  (24) An alternative photochemical method was sometimes used for in situ

; ; At ; R generation of the hemesuperoxo/non-heme compound. Prolonged pho-
of the copper center in dioxygen activation is of considerable tolysis of the heme/non-heme oxo-bridged compound under 1 atm of

interest33! It is tempting to suggest that the improved quantum dioxygen in THF at 198 K produced UWisible absorption spectra
yield for photodissociation in f(_)FeIII(Ozf)CuI]Jr compared to ggnms’;%tgr?(tj with complete generation of the herseperoxo/non-heme
((L)Fe"(O,") stems from G-coordination to copper; however, (25) Steady-state UVvis absorption measurements before and after laser

additional spectroscopic studies on shorter time scales are necessary __ excitation showed no evidence for permanent photochemistry.
to fuIIy elucidate the mechanism(s) (26) Hoshino, M.; Baba, TJ. Am. Chem. S0d.998 120, 6820-6821.

(27) See Supporting Information.

In conclusion, we have shown that synthetic herfg adducts (28) At 298 K other synthetic hemes have been shown to bind dioxygen with
photorelease Owith quantum yields very close to the value known rate CO”St?m_SdOf EM~T s s gff (1:4, and 15't ble at 198 K but
for oxy-myoglobin? At a minimum, this indicates that the protein @9) Co,fvjrlfg ?oc’tﬂeep;%‘i%'essbggieﬁﬁxgé.’.(5'212:)5?,.]?”30,? warming. .

matrix and structure of the natural heme pocket are not strict (30) Dioxygen is not known to bind to the non-heme portion of this complex.

requirements for modeling oxy-myoglobin photoreactivity. In (31 1"62‘1%7722‘{%‘ E. E.; Kamaraj, K.; Karlin, K. DChem. Re. 2004

addition, we report the highest quantum yield for complete dioxygen (32) vaws, C. L.Handbook of Transport Property Dat&ulf Publishing:

release forany oxy-heme ever measured. This finding opens the @) ';AOUSX%?{ TXR, 1295-h o A Ch F E. S EinAtsdc. Proc. Nat
. . . acArthur, R.; Sucheta, A.; Chong, F. F. S.; Einal . Proc. Natl.

door toward the use of other synthetic hemes, with tailored Acad. Sci. U.S.A1995 92 8105-8109.

electronic and steric properties, for further fundamental studies and (34) van Eps, N.; Szundi, I.; Einarsdottir, (Biochemistry 200Q 39,

for possible applications, e.g., in therapeutic controlled photorelease 14576-14582.

of dioxygen33:34 JA045195F
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